Number systems

Number Systems

ON / OFF

- The computer can construct a sophisticated ways of representing data using only two states: ON / OFF...
- This two-state system is called Binary System...
- While the decimal number system has a base of $\mathbf{1 0}$ (0, $1,2,3, \ldots, 7,8,9$), The binary system has a base of $\mathbf{2 (0 , 1)}$ which correspond to the $\boldsymbol{O N} / \boldsymbol{O F F}$ states...
- The combination of $\mathbf{0} \mathrm{s}$ and $\mathbf{1 s}$ can represent a large numbers...

$>$ Bit

- Each $\mathbf{0}$ or $\mathbf{1}$ in a binary system is called a bit (binary digit) ...
- It is the basic unit for storing data in a computer...
- But a single bit cannot store all the numbers, letters and special characters that the computer must process... The bits are put together in a group called a Byte...

Number systems

$>$ Byte

- There are usually $\mathbf{8}$ bits in a byte, which represents one Character of data... a letter, digit, or special character...
- Capacity of memory and storage are expressed in the number of bytes...
- Kilobytes: Abbreviated by $\mathbf{K B}$ or \mathbf{K}, it represents 2 to the power of $10\left(\mathbf{2}^{\mathbf{1 0}}\right)$ which is $\mathbf{1 0 2 4}$ bytes...
- Megabytes: Abbreviated by MB , it represents 1024×1024 bytes which is roughly one million bytes...
- Gigabytes: Abbreviated by GB , it represents roughly one billion bytes...

$\underline{\text { Word }}$

- A computer Word is the number of bits that make up a unit of data, as defined by the computer system... (It varies from a computer to another)...
- Generally, the larger the word, the more powerful the computer (An 8- bit machine could handle 1 byte at a time... but a 64 -bit machine can handle 8 bytes at a time... 8 times the faster)
$>$ Number Systems
- Binary:
- Octal:
- Decimal:
- Hexadecimal:

Base 2 number system...
Base 8 number system...
Base 10 number system...
Base 16 number system...

Binary	Octal	Decimal	Hexadecimal

$>$ Decimal, Binary, Octal and Hexadecimal equivalents

Decimal	Binary	Octal	Hxadecimal
0	$\mathbf{0}$	0	$\mathbf{0}$
1	$\mathbf{1}$	1	$\mathbf{1}$
2	$\mathbf{1 0}$	2	$\mathbf{2}$
3	$\mathbf{1 1}$	3	$\mathbf{3}$
4	$\mathbf{1 0 0}$	4	$\mathbf{4}$
5	$\mathbf{1 0 1}$	5	$\mathbf{5}$
6	$\mathbf{1 1 0}$	6	$\mathbf{6}$
7	$\mathbf{1 1 1}$	7	$\mathbf{7}$
8	$\mathbf{1 0 0 0}$	10	$\mathbf{8}$
9	$\mathbf{1 0 0 1}$	11	$\mathbf{9}$
10	$\mathbf{1 0 1 0}$	12	\mathbf{A}
11	$\mathbf{1 0 1 1}$	13	\mathbf{B}
12	$\mathbf{1 1 0 0}$	14	C
13	$\mathbf{1 1 0 1}$	15	\mathbf{D}
14	$\mathbf{1 1 1 0}$	16	E
15	$\mathbf{1 1 1 1}$	17	F
16	$\mathbf{1 0 0 0}$	20	$\mathbf{1 0}$

$>\underline{\mathrm{C}++ \text { supported Data Type and Ranges }}$

Type Name	Bytes	Range of Values
char, signed char	$\mathbf{1}$	-128 to 127
unsigned char	$\mathbf{1}$	0 to 255
short short int signed short int	$\mathbf{2}$	$-32,768$ to 32,767
unsigned short unsigned short int	$\mathbf{2}$	0 to 65,535
long long int signed long int	$\mathbf{4}$	$-2,147,483,648$ to
unsigned long unsigned long int	$\mathbf{4}$	0 to $4,294,967,295$
float	$\mathbf{4}$	$3.4 \mathrm{e}+/-38$ (7 digits)
double	$\mathbf{8}$	$1.7 \mathrm{e}+/-308$ (15 digits)
long double	$\mathbf{1 0}$	$1.2 \mathrm{e}+/-4932$ (19 digits)

